Developing Middle School Students’ AI Literacy

Irene Lee
ialee@mit.edu
Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

Safinah Ali
safinah@media.mit.edu
MIT Media Lab
Cambridge, Massachusetts, USA

Helen Zhang
safinah@media.mit.edu
Boston College
Newton, Massachusetts, USA

Daniella DiPaola
dipaolah@media.mit.edu
MIT Media Lab
Cambridge, Massachusetts, USA

Cynthia Breazeal
cynthiab@media.mit.edu
MIT Media Lab
Cambridge, Massachusetts, USA

ABSTRACT

In this experience report, we describe an AI summer workshop designed to prepare middle school students to become informed citizens and critical consumers of AI technology and to develop their foundational knowledge and skills to support future endeavors as AI-empowered workers. The workshop featured the 30-hour DAILy curriculum that is grounded in literature on child development, ethics education, and career development. The participants in the workshop were students between the ages of 10 and 14; 87% were from underrepresented groups in STEM and Computing. In this paper we describe the curriculum (adapted to a virtual format), its implementation during synchronous online workshop sessions in summer of 2020, and preliminary findings on student outcomes. We reflect on the successes and lessons we learned in terms of supporting students’ engagement and conceptual learning of AI, shifting attitudes toward AI, and fostering conceptions of future selves as AI-enabled workers. We conclude with discussions of the affordances and barriers to bringing AI education to students from underrepresented groups in STEM and Computing.

CCS CONCEPTS

- Computing methodologies → Machine learning; Learning paradigms; Learning settings; Machine learning approaches; Machine learning algorithms; - Social and professional topics → Computing education; Computational thinking; Model curricula.

KEYWORDS

machine learning education, computing education, computational thinking

ACM Reference Format:

1 INTRODUCTION

With the rapid growth of enormous amounts of data and computation power, Artificial Intelligence (AI) is making unprecedented industrial and societal impact. The rapid expansion of AI across fields and industries necessitates developing a workforce with strong computational skills and specifically, the knowledge and capability to work with AI. Despite this need, recent studies, as well as our own research, have raised questions about the extent to which youth are aware of AI in their everyday lives and its application in industries of the future that may limit their interest in pursuing learning trajectories that lead toward careers in these fields. Furthermore, little is known about how to prepare students for work in AI and AI-intensive industries of the future.

The current interest in and call for AI activities in K-12 education echoes a more general demand for computational and scientific literacy among young people [25]. Yet AI literacy in K-12 is in its infancy and the field is only beginning to learn how people gain an understanding of AI concepts and processes and the ability to incorporate AI processes within their own applications. At the same time, broadening participation in AI is of utmost importance to ensure that the design and utilization of AI technologies are inclusive and not reinforcing inequities based on demographic variables. Through their participation in developing the AI technologies of the future, persons from underrepresented groups in STEM and computing and their allies can work together towards ensuring that the AI industries of the future are founded in principles of inclusivity, provide equitable access, include consideration of multiple stakeholders and potential users, and minimize the potential for bias.

2 THEORETICAL FOUNDATIONS

The design of the DAILy workshop is grounded in literature on child development, ethics education, and career development. When considering middle school students’ capability to learn AI concepts such as classification and prediction, we referred to literature on children’s developmental trajectories. In terms of learning and cognition, middle school students are able to think more abstractly than younger students [1, 5, 9] and they can incorporate new knowledge into existing schemas [9, 10]. Researchers found that students in 3rd-5th grades can be supported in making the transition from concrete to abstract thinking through scaffolding such as intermediary representations of abstract concepts in computational thinking contexts [16].
Another consideration was whether ethics education was appropriate for middle school students. Research has found that even young children have a conception of ethical behavior. Li et al. found children under the age of 7 show a preference for self-satisfying action but around age 7, getting more while another gets less is seen as not “just” [13, 23]. Additionally, Wood found students in the middle childhood years typically have developed a sense of morality and a conscience based on values [26]. At the collegiate level, research has shown that embedding ethics throughout a course leads to an increase in students’ consideration of ethics in technology design [23]. Incorporating ethical and social dimensions into science or engineering courses can increase student retention rates and better attract students, particularly underrepresented minorities and women, as they in general tend to be more drawn to topics that emphasize helping others and social concern [6, 17]. Previous work has incorporated ethical considerations such as algorithmic bias and ethical design of recommender systems into a middle school AI and Ethics curriculum and found that students were able to engage with these concepts [18].

The appropriateness of engaging middle school students in consideration of future careers is also grounded in research. Middle school years are an important time in forming youths’ future career interests and pursuits in STEM [4, 15]. An exposure to STEM careers in middle school is critical as students who do not express STEM-related aspirations at age 10 are unlikely to develop them by the age of 14 [2]. Further recent theories on career development call for programs that focus on developing individuals’ career adaptability at an early age [21]. Researchers argue that people craft their careers by integrating their personal needs and interests with social expectations regarding the preparation for and participation in different job roles, and, thus, their adaptation to the environment [3, 12]. Considering the changing nature of future jobs and how AI is revolutionizing many fields, the DAILy workshop includes carefully planned career education sessions that engage students in exploring AI-empowered jobs and developing their ability to identify and utilize their career adaptability resources for coping with job-related tasks.

3 DEVELOPING AI LITERACY

3.1 Institutional Collaboration

The DAILy project is an interdisciplinary collaboration between the MIT Media Lab and MIT STEP Lab and Boston College. Each partners’ unique expertise was needed to carry out the project. MIT STEP Lab contributed prototypes of participatory simulations and games that taught AI concepts such as decision trees and neural networks and expertise in teaching middle schoolers about models and modeling. MIT Media Lab shared a wealth of AI curricula and tools and experience designing workshops for k12 students and developing tools. Graduate students served as primary instructors during workshops and researchers thereafter. Boston College’s expertise in learning sciences, assessment design, and career development was critical to the research design and implementation. Our community partner provided essential support during recruitment, registration, and provided operational support during the workshop. Most importantly, as a minority owned and operated organization, the organization’s leaders served as a sounding board and helped to frame and facilitate discussions with youth about the negative impacts of bias in AI systems on people of color.

3.2 Target Audience

Our target audience was students of color. We recruited youth from underrepresented groups in STEM and computing through our community partner. Family information meetings were hosted online and emails were sent to interested families with middle schoolers enrolled in previous summer and afterschool programs. We reached out to parents who signed their child(ren) up for summer programs and hosted welcome meetings to inform them of the program and research study prior to seeking consent/assent. Thirty-one middle school students participated in the AI workshop. With respect to gender, 61% of participants were female, 39% were male. Of the attendees 87% were from underrepresented groups in STEM and computing fields: 58% were Black, 13% were Hispanics/Latinos, 6% were Asian females, and 10% were from two or more underrepresented groups in STEM and computing. Two students (6%) did not respond. The age range was 10.4 to 14.7 years old with an average age of 12.57 years old. Students were asked about their prior experience using Scratch as a proxy for programming/coding experience: 42% had no or little prior experience and 39% had “some” to “a lot” of experience.

3.3 Approach

Our approach is based on the following theory of action. An ethics framing, exposure to AI-enhanced careers, and the relating AI to their daily lives, current events, and real-world problems engages students from diverse backgrounds and raise their perceptions of the relevance of AI in their lives. Interacting with AI applications (such as Google’s Teachable Machine) will whet their curiosity about how these tools work as they train and test AI models. Online participatory simulations will help students build mental models of mechanisms and algorithms in action during machine learning and expose how bias can be embedded in AI systems through datasets. Through a series of career-focused activities, students uncover their strengths, identify jobs that both match their interests and are aligned with their strengths, understand the occupational implications of the advancement of AI, and outline resources and barriers along their paths to their future dream jobs. Importantly, youth will recognize their AI career-related skills and resources, and develop their capacity to internalize these skills as they formulate future career ideas.

3.4 The Curriculum

The DAILy curriculum interweaves teaching of AI concepts, raising awareness of AI adoption in future jobs, and the investigation of ethical issues in AI. Learning activities include hands-on games, discussions, and building projects that integrate AI capabilities into a custom Scratch-based toolkit. Students learned key AI concepts such as Logic systems, Machine Learning, and Generative Adversarial Networks (GANS) and were engaged in working with both classification and generative uses of AI to develop a fundamental yet holistic view of AI.
Table 1: [DAILy] curriculum: interweaving of AI concepts, ethics, awareness, and careers

<table>
<thead>
<tr>
<th>Unit</th>
<th>AI Concepts</th>
<th>Ethics</th>
<th>Awareness</th>
<th>Careers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>What is AI?</td>
<td>Best PB&J and Ethical Matrix activity</td>
<td>AI or not AI? activity</td>
<td></td>
</tr>
<tr>
<td>Unit 2</td>
<td>What are Decision Trees? Pasta-Land</td>
<td>Investigating Bias in AI</td>
<td>Examples of Bias in AI</td>
<td>What will your future career be?</td>
</tr>
<tr>
<td>Unit 3</td>
<td>What is Supervised Learning? Explore Teachable Machine</td>
<td>Algorithmic bias. Examples of algorithmic bias.</td>
<td>Supervised Learning in your life - AI Bingo activity</td>
<td>Inventory of me</td>
</tr>
<tr>
<td>Unit 4</td>
<td>What is a Neural Network? NN game</td>
<td>Where bias might be embedded in NNs.</td>
<td>Examples of where NN are used</td>
<td>Work personality and matched occupations</td>
</tr>
<tr>
<td>Unit 5</td>
<td>How to train and test a Supervised Learning model in Teachable Machine.</td>
<td>How accurate is your model? What is the potential for bias?</td>
<td>Image classification in your life</td>
<td>Planting seeds of STEM/AI careers</td>
</tr>
<tr>
<td>Unit 6</td>
<td>Classifier vs Generator. What are GANS?</td>
<td>Ethics of GANs</td>
<td>GANS or not</td>
<td>People working in AI fields. Creativity in STEM/AI careers</td>
</tr>
<tr>
<td>Unit 7</td>
<td>How do GANs work? Generator vs Discriminator game</td>
<td>Art & Ownership discussion</td>
<td>GANs in your life. Engage with various applications of GANs</td>
<td>AI's impact on my future field of work? People working in AI</td>
</tr>
<tr>
<td>Unit 8</td>
<td>What are Deepfakes?</td>
<td>Deepfakes and Misinformation</td>
<td>Deepfakes in your life. How misinformation spreads</td>
<td>People working in AI related fields continued.</td>
</tr>
<tr>
<td>Unit 9</td>
<td>What is Text Generation? Make a text generator</td>
<td>Best Ethics of text generation</td>
<td>Text generation in your life. Examples of text generation</td>
<td>People working in AI related fields continued.</td>
</tr>
<tr>
<td>Unit 10</td>
<td>Ethical Design of AI. Redesign YouTube</td>
<td>Ethical issues in AI (recap)</td>
<td>Stakeholders have different goals for AI</td>
<td>My Career Roadmap</td>
</tr>
</tbody>
</table>

The 30-hour curriculum features (1) an Introduction to AI, (2) logic systems (e.g., decision trees constructed by humans), (3) supervised learning (e.g., concepts, processes, and bias) with Google’s Teachable Machine, (4) neural networks through a participatory simulation game, and (5) Generative Adversarial Networks or GANs. Within each unit students investigate the existence and causes of algorithmic bias, its societal and ethical implications and ways to mitigate bias; and also gain awareness of AI related careers, recognize their own strengths and interests for future jobs, and realize the importance of technical skills development and the ongoing nature of change and adaptation in today’s job world. The career activities also include watching videos of interviews with AI experts working in different fields (healthcare, art, etc.) to further inspire students.

Below we describe the connections made between AI concepts, ethics, and career awareness in unit 6: Classifier vs Generator. What are GANS? In this unit, we begin by introducing generative machine learning through a color generation activity called “Classifier vs. Generator.” Since these students have already completed a lesson on classification using Supervised Learning, we introduce the process of generation, the creation of new media, in contrast with classification, the arrangement of existing media into categories. Students experience the process of generation and classification by mixing colors in an online platform called “TryColors” (http://trycolors.com/). During the generation stage, students observe that even with a few input colors, they can create a varied palette of colors. Next, in the classification stage, they try to arrange their generated colors into existing color buckets.

Through this activity, students grasp the difference between algorithms that classify and those that generate. Students then learn about examples of AI systems that perform classification and generation and practice distinguishing between the two. Next, we introduce Generative Adversarial Networks (or GANs) as a kind of AI that is used for generating media after being trained on datasets of the said media. Awareness of GANS in daily life is raised as students learn to distinguish GAN-produced media from human produced media and practice searching for tell-tale signs of algorithmically generated media in an activity called “GANs or not.” We conclude the unit by connecting the core concepts to ethical considerations and career futures. After examining different works of art generated by GANs, we discuss the ethics of GANs (with prompts like who should get credit as the artist?). Then we watch a

Figure 1: TryColor activity: students generate color palettes using a few starting colors (left), then they classify their generated colors into color wheel buckets (right).
video about an artist who uses AI as a tool for creative expression, and engaged students in ideating about how AI is utilized in artistic creation and what they would like to generate with GANs.

3.4.1 Conversion of Activities for Online Settings. We adapted the DAILy curriculum for remote synchronous online instruction in preparation for the online summer workshop. This entailed the conversion of several in-person classroom lessons to online activities. For instance, Unit 1 consisted of an AI or Not activity, in which students classified physical cards with pictures of common technology (such as Alexa) as AI or Not AI. For the online adaptation, we made use of Google Drawing, and digital cards that students could drag into an AI side and a Not AI side. Each student was provided with their own copy of the Google Drawing with all the cards initially in the middle. They were tasked with sorting the cards individually into the two categories.

3.5 The AI Workshop
The AI summer workshop was offered in summer 2020, in partnership with a youth serving community organization. Due to the COVID-19 pandemic, the course was taught virtually. Students met online, on Zoom, for three hours per day each weekday over two weeks. The course was taught by a team of researchers and educators. Each session typically started with the instructor introducing the unit’s topic, followed by a whole-class activity, a small group or individual activity, a discussion relating to ethical implications, and its connections to AI careers. Participants were grouped by age into three groups of 10 or 11 individuals for small group discussions and hands-on activities.

4 IMPLEMENTATION EXPERIENCES AND CHALLENGES
4.1 Student Participation and Engagement
Classroom observations revealed that the enactment of the DAILy curriculum was successful overall. Students completed all curricular activities outlined in Table 1 with high attendance rates (85 to 95% of all participants attended each day). They actively participated in almost all activities, including the technology explorations, interactive lecturing, embedded assessments, class discussions, daily reflections, and final projects. The percentages of students who submitted the completed work for each individual activity, however, ranged from 80% to 30%. One reason for the varied submission rates may be related to the different nature of the activities. For example, in the “Investigating bias” activity, students participated in impassioned discussions on examples of bias they noticed in everyday life, commenting on each other’s examples, and searching online for more biases they may have never realized before. The assignment submission rate of this activity, however, was the lowest despite the engagement of students. Based on these findings, we posit that students probably preferred live exchange of their thoughts and ideas with peers to writing them down, when exploring bias and other ethics-related issues. In another “TryColor” activity, the low submission rate may be related to the gamified approach employed in the activity. Over half of the students spent almost all the allocated time on the game of generating their own colors and replicating others’ colors. Many of them ended up with insufficient time to complete the assignment. In addition, we postulate that the low submission rate of assignments may be related to the Google Classroom we used to manage the enactment of the workshop. While this tool helped deliver the workshop activities in a well-structured way, it made the experience resemble school-based ones, which did not resonate well among youth in the out-of-school setting. It is understandable that students in this by-choice summer program felt reluctant to submit multiple assignments every day as they would in school.

4.2 Student Experiences with Activities
We examined student daily reflections and interviews to reveal more detailed information about their experiences during the DAILy workshop.

4.2.1 Ethics in AI activities. The findings show that students mostly enjoyed ethics-related activities of Unanticipated Consequences (Unit 8) and Investigating bias in AI (Unit 2). 10 out of the 11 students who volunteered to be interviewed after the workshop thought these activities were their favorites. The “Unanticipated Consequences of Technology” activity engaged students in working in small groups to first brainstorm one consequence of a technology (e.g., Lady GAN is a new pop star whose music is created completely by generated music and lyrics to match the style of Lady Gaga). The group then sent their consequence to other groups for the attendant consequences. Finally, the first group reviewed and reflected on the resulting consequences. Students expressed their excitement when working on this activity in the interview, e.g., “That [activity] was hilarious because a lot of the consequences my group came up with totally turned the tables. Some of them made it much worse and some of them just made it much better, but it was total opposite from what the first consequence with Amelia [pseudonym of a student in the group] was.” Students also were able to internalize what they had experienced and to connect to ethical implications of technology design, “because if people who make the AIs don’t think enough through it, they can have hard consequences and bad consequences.
People can get sued if they don’t check over or people can get in like a lot of trouble and damage if they don’t check over. But it [this activity] was funny, but it’s realistic.

4.2.2 Investigating bias. Similarly, students participated actively in the Investigating bias in AI activity where they learned about case studies of bias in AI systems, conducted investigations (searching images of physicists online, etc.) to explore bias present in common technologies, and discussed the implications. Students were surprised to recognize that bias has been existent in many daily technologies, e.g., “when we typically think of Google, we think it’s objective, it’s always right, but it’s not always represented in the right way” (discussion during the activity). We also noticed that female students from underrepresented groups were particularly active in the investigation and ensuing discussion. They talked about fairness, how to provide everyone with equitable instead of equal opportunities, and what sexism and stereotyping mean. One female African-American student concluded that “My takeaway is that AIs like Google and facial recognition, haven’t been updated in a long time because you can clearly see the bias in that. And even though we think that these things are very... very smart, but I never understood or considered that they might have been really bias until going over these things.” These findings are consistent with the literature that women and underrepresented minorities are often interested in and less engaged with the entire classroom. Discussions were central to several of the activities, e.g., “see how people would mix up the colors and all.” Another example is the “Deepfakes” activity in which students reviewed videos, images, and texts and determined whether they were generated by AI. Students were astonished to find out that all the files were generated by AI. Many students admitted that even after instructions on how to detect Deepfakes, they still had difficulties.

4.2.3 Design and build experiences. The technology exploration and creation activities supported students in making sense of the underlying AI concepts. Students in total spent approximately five hours on a series of activities using Google’s Teachable Machine (in Units 3 and 5). They first learned and explored how to use the tool to train supervised learning model to recognize faces, gestures, and voices. Then they experimented with biased datasets (more pictures of dogs than cats), observed the results, and brainstormed and tested how to fix the bias. As a final activity they explored how to integrate the supervised learning model trained using Teachable Machine into Scratch animations (e.g., when the model recognized certain voices, the sprite would wave hands). Our observations showed that although students had challenges in the last activity due to limited Scratch skills or computing power of their computers, students in general developed a solid understanding of supervised learning and how to mitigate potential bias of supervised system. Further this experience of training the AI model enabled some students to develop a sense of control over technologies as one student reflected “I feel like we could do it...so teachable machine is, we’re in control, but we’re teaching the teachable machine how to do something.” This sense of agency or control over technology has been long recognized as a key factor in impacting peoples’ interaction with and perceptions of technology [14]. It may have helped the participating youth become more interested in and less anxious about AI.

4.2.4 Participatory simulations. Leveraging a participatory simulation approach [11], the Neural Network game engaged students in playing the role of nodes in training of a network. Students captioned a mystery image by passing on information through different “layers” of the network and experienced how nodes and layers worked to train the network. Students found the analogy between feed-forward mechanism and the “telephone game” helpful in helping make sense of the progression of information through the nodes.

4.2.5 Generative AI activities. Activities around generative AI were engaging yet difficult to students. For instance, the “colors” activity (see an earlier description of the detailed activity) was frustrating as one students mentioned in her interview “because there was a little too much of one and too much of the other. Even if you got like, at least like a 96% close to it, for me, it still didn’t allow me to pass... Sometimes I did give up.” Despite the frustration, the student still found it interesting because she could “see how people would mix up the colors and all.” Another example is the “Deepfakes” activity in which students reviewed videos, images, and texts and determined whether they were generated by AI. Students were astonished to find out that all the files were generated by AI. Many students admitted that even after instructions on how to detect Deepfakes, they still had difficulties.

4.2.6 Career development activities. The career training sessions engaged students in thinking about and exploring their future jobs. The Inventory of Me activity engaged students in discovering their work personalities and finding jobs that match them. Students were surprised to find their matched job options as they may have never heard of them. The exploration of how AI has been and may be adopted in different jobs sparked their interest in AI. One girl thought AI will impact her future job “because when we were doing the job career search, a lot of the jobs that popped up were jobs that I was interested in and it was connected to AIs. So I feel like that definitely shows that a job that I want will be connected to AI in some way.”

4.3 Implementation Challenges

Several implementation challenges were presented by remote synchronous online instruction due to COVID-19. In online versions of unplugged activities, the benefits of working with physical materials and embedding activities in a physical space were lost. For example, in the PastaLand activity, students’ ability to identify key features of the pasta was limited by the graphical representation we chose. The relative sizes of the different pasta as well as the textures could not be accurately portrayed. Similarly, the online environment limited the use of a project-based learning approach. The difficulties encountered with supporting students’ collaboration online limited opportunities to help students apply theoretical knowledge to constructing tangible artifacts while working collaboratively in a peer group.

The online environment also shifted interactions with peers and instructors from semi-private to public. For instance, in an online environment, we found that collaboration while debugging moved from intimate (semi-private) interactions to an interaction shared with the entire classroom. Discussions were central to several of our activities since the curriculum focused on not just teaching AI concepts but also discussing ethical issues associated with AI. Lack of access to a microphone or video camera, or background noise hindered effortless conversation in these discussions, and we had to rely on chat. Student engagement was challenging to maintain and
5 LEARNING OUTCOMES

The learning outcomes were mainly evaluated using two instruments administered before and after the workshop: (1) the AI Concept Inventory that assesses youths’ knowledge and skills in AI through three validated subscales: AI general concepts, logic systems, and machine learning. (2) the Attitudes toward AI and AI careers survey that explores youths’ interest in AI and related careers, AI career awareness, and career adaptability. All questions were drawn and modified from validated instruments, e.g., the Career Futures Inventory [20, 24].

We found a statistically significant increase in youths’ AI concept inventory scores from pre- to post-test (t(17)=-2.09, p < .05, d = .54). The subscale with the largest increase in scores was machine learning (including both unsupervised and supervised learning). Students on average had a score increase of 1.56 —meaning that over half of the students correctly answered at least two more questions about machine learning concepts and processes on the post-test. We also found significant increase in AI career awareness (t(18)= 3.58, p < .01, d = 1.00) and career adaptability skills (t(18) =1.013, p =.001, d = 1.40) after the workshop. Students also increased their interest in AI after the intervention, yet the increase was not statistically significant. One reason may be the ceiling effect. Participating youth were highly interested in AI before the workshop (Mean=3.59 out of 5) and maintained their interest level on the post-test (Mean=3.71).

6 CONCLUSIONS

Preparing youth to become knowledgeable workers in the age of AI is essential for training the next generation of workforce. This paper reports the design and implementation of an AI workshop among middle school aged youth because middle school years are an important time to develop their interest in and shape their views of AI and related jobs. This workshop aims to develop AI literacy through an integration of AI concepts, ethical and societal implications of AI, and the adoption of AI in future jobs. We pilot tested this workshop among 31 middle school youths from groups underrepresented in STEM and Computing in a self-selected summer program. After the workshop we found significant increase in student conceptual understanding of AI, knowledge of potential bias of AI, and ability to adapt to future AI-empowered jobs. This indicates that the approach of combining AI, ethics, and careers to develop AI literacy is feasible and suitable for middle school youth.

Consistent with previous AI ethics curricula, we have found middle school students were highly engaged in discussions of ethics, in the context of fairness and bias in AI. Students were capable of reflecting on their own behaviors and its impacts on others, and can extend this reflection to encompass how various stakeholders in AI systems can design systems based on their values and needs. Additionally, middle school students were able to identify how and why AI applications can be unfair to themselves and others. For instance, in the post-test interview, one student said, “I think that bias [in AI] could be harmful for us because a lot of people aren’t fairly represented, so they wouldn’t be able to use it as much.”

Further we found that the youths talked with their family members about AI. A student in his exit interview told us that ‘I asked my mom that day when we were talking about [...] if AI could probably take our jobs. I asked her, “Are you scared if AI takes your job?” She’s like, “Yes, but I know I’ll have another job.” So, it’s really cool what AI could do and make new things for other people.” Through the conversation with his mom, the student was active in leveraging existing familial and aspirational capital [7] to make sense of the potential impact of AI and to inform and refine his existing understanding and perceptions of AI. Meanwhile, this quote provides further evidence that our approach may have sparked high interest among students so that AI arise during family conversations as a search on science learning has suggested that conversations about science topics are not typical occurrences for all youth, especially for underrepresented minority youth [8, 19].

7 FUTURE WORK

Based on our pilots and findings, we aim to further revise our curriculum and assessment methods. First, we plan to add more discussions around positive application areas of AI such as healthcare. We will frame the mitigation of AI conversation such that the onus of fixing the problem does not lie on students from underrepresented minority groups. Second, we aim to include more project-based activities where students can apply their own interests, and ethical considerations to an AI-enabled project. Lastly, we aim to scale this curriculum to teachers and students across the country for wider access.

8 ACKNOWLEDGMENTS

This work was funded by National Science Foundation award DRL-2022502. We are grateful to the teachers, facilitators and students of Waltham Public Schools, S.T.E.A.M Ahead program and College Bound (2020) program. We thank Grace Kim, Jenna Hong, CC Song, Victor Sindato, Yihong Cheng, Nathaniel Brown and Olivia Szendey for assisting us with data collection and analysis.
REFERENCES

